

Welcome to LumiSpy’s documentation!

[image: Build_status]#1 [image: Tests]#2 [image: Codecov_status]#3 [image: Language_grade]#4 [image: Total_alerts]#5
[image: Python_version]#6 [image: PyPI_version]#7 [image: Anaconda_version]#8 [image: License]#9 [image: DOI]#10
[image: Documentation_status]#11

LumiSpy is a Python package extending the functionality for multi-dimensional
data analysis provided by the HyperSpy#12 library. It is
aimed at helping with the analysis of luminescence spectroscopy data
(cathodoluminescence, photoluminescence, electroluminescence, Raman, SNOM).

Check out the Installation section for further information, including
how to start using this project.

Complementing this documentation, the LumiSpy Demos#13
repository contains curated Jupyter notebooks to provide tutorials and exemplary
workflows.

Note

This project is under active development. Everyone is welcome to contribute.
Please read our (see Contributing) guidelines and get started!

Contents

User Guide

	Installation

	Introduction

	Non-uniform signal axes

	Fitting luminescence data

	Utility functions

	LumiSpy metadata structure

API References

	lumispy
	lumispy package

Tutorials

	Demo notebooks#14

Release Notes

	Changelog

Credits and citation

	Citing LumiSpy

	Contributing

	License

	On GitHub#15

Footnotes

	#1

	https://dev.azure.com/Lumispy/lumispy/_build/latest?definitionId=3&branchName=main

	#2

	https://github.com/lumispy/lumispy/actions

	#3

	https://codecov.io/gh/lumispy/lumispy

	#4

	https://lgtm.com/projects/g/LumiSpy/lumispy/context:python

	#5

	https://lgtm.com/projects/g/LumiSpy/lumispy/alerts/

	#6

	https://pypi.python.org/pypi/lumispy

	#7

	https://pypi.python.org/pypi/lumispy

	#8

	https://anaconda.org/conda-forge/lumispy

	#9

	https://www.gnu.org/licenses/gpl-3.0

	#10

	https://doi.org/10.5281/zenodo.4640445

	#11

	https://lumispy.readthedocs.io/en/latest/?badge=latest

	#12

	https://hyperspy.org/

	#13

	https://github.com/LumiSpy/lumispy-demos

	#14

	https://github.com/LumiSpy/lumispy-demos

	#15

	https://github.com/LumiSpy/lumispy

Installation

To install LumiSpy, you have the following options (independent of the operating system you use):

	LumiSpy is included in the HyperSpy Bundle#1,
a standalone program that includes a python distribution and all relevant libraries
(recommended if you do not use python for anything else).

	Installation using conda (recommended if you are also working with other python packages).

	Installation using pip.

	Installing the development version from GitHub#2,
refer to the appropriate section in the HyperSpy user guide#3
(replacing hyperspy by lumispy).

Installation using conda

Follow these 3 steps to install LumiSpy using conda.

1. Creating a conda environment

LumiSpy requires Python 3 and conda – we suggest using the Python 3 version
of Miniconda#4.

We recommend creating a new environment for the LumiSpy package (or installing
it in the HyperSpy#5 environment, if you have one already).
To create a new environment:

	Load the anaconda prompt.

	Run the following command:

(base) conda create -n lumispy -y

2. Installing the package in the new environment

Now activate the LumiSpy environment and install the package from conda-forge:

(base) conda activate lumispy
(lumispy) conda install -c conda-forge lumispy -y

Required dependencies will be installed automatically.

Installation is completed! To start using it, check the next section.

Note

If you run into trouble, check the more detailed documentation in the HyperSpy user guide#6.

3. Getting Started

To get started using LumiSpy, especially if you are unfamiliar with Python, we
recommend using Jupyter notebooks#7. Having installed
LumiSpy as above, a Jupyter notebook can be installed and opened using the following commands
entered into an anaconda prompt (from scratch):

(base) conda activate lumispy
(lumispy) conda install -c conda-forge jupyterlab -y
(lumispy) jupyter lab

Tutorials and exemplary workflows#8
have been curated as a series of Jupyter notebooks that you can work through
and modify to perform many common analyses.

Installation using pip

Alternatively, you can also find LumiSpy in the Python Package Index (PyPI)
and install it using (requires pip):

pip install lumispy

Required dependencies will be installed automatically.

Updating the package

Using conda:

conda update lumispy -c conda-forge

Using pip:

pip install lumispy --upgrade

Note

If you want to be notified about new releases, please Watch (Releases only) the Lumispy repository
on GitHub#9 (requires a GitHub account).

Footnotes

	#1

	https://hyperspy.org/hyperspy-bundle/

	#2

	https://github.com/LumiSpy/lumispy/

	#3

	https://hyperspy.org/hyperspy-doc/current/user_guide/install.html#install-development-version

	#4

	https://conda.io/miniconda.html/

	#5

	https://hyperspy.org

	#6

	https://hyperspy.org/hyperspy-doc/current/user_guide/install.html#installation-using-conda

	#7

	https://jupyter.org/

	#8

	https://github.com/lumispy/lumispy-demos

	#9

	https://github.com/LumiSpy/lumispy/

Introduction

What is LumiSpy

LumiSpy is an open-source python library aimed at helping with the analysis
of luminescence spectroscopy data – the development started mainly with
photoluminescence (PL), cathodoluminescence (CL), electroluminescence (EL) and
Raman spectroscopy in mind. Besides the standard continuous-excitation spectral
data, the idea is to provide tools also for the analysis of time-resolved
(transient) measurements. However, it may prove useful also for other optical
measurements, such as absorption or transmission spectroscopy, scanning optical
near field miscroscopy (SNOM), as well as fourier-transform infrared
spectroscopy (FTIR).

LumiSpy is an extension to the python package `HyperSpy <https://hyperspy.org>`_
that facilitates hyperspectral data analysis, i.e. maps or linescans where a
spectrum is collected at each pixel. Or more general, multidimensional datasets
that can be described as multidimensional arrays of a given signal. Notable
features that HyperSpy provides are:

	base signal classes#1
for the handling of (multidimensional) spectral data,

	the necessary tools for loading various data file formats#2 with a focus
on electron microscopy

	analytical tools that exploit the multidimensionality of datasets,

	a user-friendly and powerful framework for model fitting#3 that
provides many standard functions and can be easily extended to custom ones,

	machine learning#4
algorithms that can be useful e.g. for denoising data,

	efficient handling of big datasets,#5,

	functions for data visualization#6
both to evaluate datasets during the analysis and provide interactive
operation for certain functions, as well as for plotting of data.

	extracting subsets of data from multidimensional datasets via regions of
interest#7
and a powerful numpy-style indexing mechanism#8,

	handling of non-uniform data axes (introduced in the v1.7 release).

LumiSpy provides in particular:

	additional Signal types specifically for luminescence spectra and
transients,

	transformation to signal_axis for use of other units, such as
electron Volt and wavenumbers (Raman shift),

	various utility functions useful in luminescence spectroscopy data analysis,
such as joining multiple spectra along the signal axis, normalizing data, etc.

LumiSpy should facilitate an easy and reproducible analysis of single
spectra or spectral images

Signal types

As an extension to HyperSpy, LumiSpy provides several signal types extending the
base classes available in HyperSpy#9. When
the LumiSpy library is installed, these additional signal types are directly
available to HyperSpy. To print all available specialised
hyperspy.signal.BaseSignal#10 subclasses installed in your
system call the hyperspy.utils.print_known_signal_types()#11
function:

>>> hs.print_known_signal_types()

The different subclasses are characterized by the signal_type metadata
attribute. Some additional properties are summarized in the table below.
Depending on the use case, certain functions will only be available for some
signal types (or inheriting) signal types.

LumiSpy subclasses and their basic attributes.

	BaseSignal subclass

	signal_dimension

	signal_type

	dtype

	aliases

	LumiSpectrum

	1

	Luminescence

	real

	LuminescenceSpectrum

	CLSpectrum

	1

	CL

	real

	CLSpectrum, cathodoluminescence

	CLSEMSpectrum

	1

	CL_SEM

	real

	CLSEM, cathodoluminescence SEM

	CLSTEMSpectrum

	1

	CL_STEM

	real

	CLSTEM, cathodoluminescence STEM

	ELSpectrum

	1

	EL

	real

	ELSpectrum, electroluminescence

	PLSpectrum

	1

	PL

	real

	PLSpectrum, photoluminescence

	LumiTransient

	1

	Transient

	real

	TRLumi, TR luminescence, time-resolved luminescence

	LumiTransient

	2

	TransientSpec

	real

	TRLumiSpec, TR luminescence spectrum, time-resolved luminescence spectrum

The hierarchy of the LumiSpy signal types and their inheritance from HyperSpy
is summarized in the following diagram:

└── hyperspy.signal.BaseSignal#12

├── hyperspy._signals.signal1d.Signal1D#13

│ └── LumiSpectrum

│ │ ├── CLSpectrum

│ │ │ ├── CLSEMSpectrum

│ │ │ └── CLSTEMSpectrum

│ │ ├── ELSpectrum

│ │ └── PLSpectrum

│ └── LumiTransient

└── hyperspy.signal.Signal2D

└── LumiTransientSpectrum

Where are we heading?

LumiSpy is under active development, and as a user-driven project, we welcome
contributions (see Contributing) to the code and documentation
from any other users.

Currrently, we have implemented the base functionality that extends
HyperSpy’s capabilities#14
to additional signal classes. In the near future, the following functions
should be developed:

	handling of transient (time-resolved) data,

	reading of common PL data formats,

	more dedicated analysis functionalities,

	…

Footnotes

	#1

	https://hyperspy.org/hyperspy-doc/current/user_guide/signal.html

	#2

	https://hyperspy.org/hyperspy-doc/current/user_guide/io.html

	#3

	https://hyperspy.org/hyperspy-doc/current/user_guide/model.html

	#4

	https://hyperspy.org/hyperspy-doc/current/user_guide/mva.html

	#5

	https://hyperspy.org/hyperspy-doc/current/user_guide/big_data.html

	#6

	https://hyperspy.org/hyperspy-doc/current/user_guide/visualisation.html

	#7

	https://hyperspy.org/hyperspy-doc/current/user_guide/interactive_operations_ROIs.html

	#8

	https://hyperspy.org/hyperspy-doc/current/user_guide/signal.html#indexing

	#9

	https://hyperspy.org/hyperspy-doc/current/user_guide/signal.html

	#10

	https://hyperspy.org/hyperspy-doc/current/api/hyperspy.signal.html#hyperspy.signal.BaseSignal

	#11

	https://hyperspy.org/hyperspy-doc/current/api/hyperspy.utils.html#hyperspy.utils.print_known_signal_types

	#12

	https://hyperspy.org/hyperspy-doc/current/api/hyperspy.signal.html#hyperspy.signal.BaseSignal

	#13

	https://hyperspy.org/hyperspy-doc/current/api/hyperspy._signals.signal1d.html#hyperspy._signals.signal1d.Signal1D

	#14

	https://hyperspy.org/hyperspy-doc/current/index.html

Non-uniform signal axes

LumiSpy facilitates the use of non-uniform axes#1,
where the points of the axis vector are not uniformly spaced. This situation
occurs in particular when converting a wavelength scale to energy (eV) or
wavenumbers (e.g. for Raman shifts).

The conversion of the signal axis can be performed using the functions
to_eV(),
to_invcm() and
to_raman_shift()
(alias for to_invcm_relative()).
If the unit of the signal axis is set, the functions can handle wavelengths in
either nm or µm.

Accepted parameters are inplace=True/False (default is True), which
determines whether the current signal object is modified or a new one is
created, and jacobian=True/False (default is True, see
Jacobian transformation).

The energy axis

The transformation from wavelength [image: \lambda] to energy [image: E] is
defined as [image: E = h c/ \lambda]. Taking into account the refractive index of
air and doing a conversion from nm to eV, we get:

[image: E[eV] = \frac{10^9}{e}\frac{h c}{n_{air} \lambda[nm]},]

where [image: h] is the Planck constant, [image: c] is the speed of light,
[image: e] is the elementary charge and [image: n_{air}] is the refractive
index of air, see also [Pfueller].

>>> s2 = s.to_eV(inplace=False)
>>> s.to_eV()

Note

The refractive index of air [image: n_{air}] is wavelength
dependent. This dependence is taken into account by LumiSpy based on the
analytical formula given by [Peck] valid from 185-1700 nm
(outside of this range, the values of the refractive index at the edges of
the range are used and a warning is raised).

The wavenumber axis/Raman shifts

The transformation from wavelength [image: \lambda] to wavenumber
[image: \tilde{\nu}] (spatial frequency of the wave) is defined as
[image: \tilde{\nu} = 1/ \lambda]. The wavenumber is usually given in units of
[image: \mathrm{cm}^{-1}].

When converting a signal to Raman shift, i.e. the shift in wavenumbers from
the exciting laser wavelength, the laser wavelength has to be passed to the function using the parameter
laser using the same units as for the original axis (e.g. 325 for nm or
0.325 for µm) unless it is contained in the LumiSpy metadata structure under
Acquisition_instrument.Laser.wavelength.

TODO: Automatically read laser wavelength from metadata if given there.

>>> s2 = s.to_invcm(inplace=False)
>>> s.to_invcm()
>>> s2 = s.to_raman_shift(inplace=False, laser=325)
>>> s.to_raman_shift(laser=325)

Jacobian transformation

When transforming the signal axis, the signal intensity is automatically
rescaled (Jacobian transformation), unless the jacobian=False option is
given. Only converting the signal axis, and leaving the signal intensity
unchanged, implies that the integral of the signal over the same interval would
lead to different results depending on the quantity on the axis (see e.g.
[Mooney] and [Wang]).

For the energy axis as example, if we require [image: I(E)dE = I(\lambda)d\lambda],
then [image: E=hc/\lambda] implies

[image: I(E) = I(\lambda)\frac{d\lambda}{dE} = I(\lambda)\frac{d}{dE} \frac{h c}{E} = - I(\lambda) \frac{h c}{E^2}]

The minus sign just reflects the different directions of integration in
the wavelength and energy domains. The same argument holds for the conversion
from wavelength to wavenumber (just without the additional prefactors in the
equation). The renormalization in LumiSpy is defined such that the intensity is
converted from counts/nm (or counts/µm) to counts/meV. The following
figure illustrates the effect of the Jacobian transformation:

[image: Illustration of the Jacobian transformation from wavelength (nm) to energy (eV).]

Transformation of the variance

Scaling the signal intensities implies that also the stored variance of the
signal needs to be scaled accordingly. According to [image: Var(aX) = a^2Var(X)],
the variance has to be multiplied with the square of the Jacobian. This squared
renormalization is automatically performed by LumiSpy if jacobian=True.
In particular, homoscedastic (constant) noise will consequently become
heteroscedastic (changing as a function of the signal axis vector). Therefore,
if the metadata.Signal.Noise_properties.variance attribute is a constant,
it is converted into a hyperspy.signal.BaseSignal#2 object
before the transformation.

See Signal variance (noise) for more general information on data variance
in the context of model fitting and the HyperSpy documentation on setting
the noise properties#3.

Note

If the Jacobian transformation is performed, the values of
metadata.Signal.Noise_properties.Variance_linear_model are reset to
their default values (gain_factor=1, gain_offset=0 and correlation_factor=1).
Should these values deviate from the defaults, make sure to run
hyperspy.signal.BaseSignal.estimate_poissonian_noise_variance()#4
prior to the transformation.

References

	Pfueller

	C. Pfüller, Dissertation, HU Berlin, p. 28 (2011).
doi:10.18452/16360#5

	Peck

	E.R. Peck and K. Reeder, J. Opt. Soc. Am. 62, 958
(1972). doi:10.1364/JOSA.62.000958#6

	Mooney

	J. Mooney and P. Kambhampati, The Journal of
Physical Chemistry Letters 4, 3316 (2013).
doi:10.1021/jz401508t#7

	Wang

	Y. Wang and P. D. Townsend, J. Luminesc. 142, 202
(2013). doi:10.1016/j.jlumin.2013.03.052#8

Footnotes

	#1

	https://hyperspy.org/hyperspy-doc/current/user_guide/axes.html#non-uniform-data-axis

	#2

	https://hyperspy.org/hyperspy-doc/current/api/hyperspy.signal.html#hyperspy.signal.BaseSignal

	#3

	https://hyperspy.org/hyperspy-doc/current/user_guide/signal.html?highlight=variance_linear_model#setting-the-noise-properties

	#4

	https://hyperspy.org/hyperspy-doc/current/api/hyperspy.signal.html#hyperspy.signal.BaseSignal.estimate_poissonian_noise_variance

	#5

	https://doi.org/10.18452/16360

	#6

	https://doi.org/10.1364/JOSA.62.000958

	#7

	https://doi.org/10.1021/jz401508t

	#8

	https://doi.org/10.1016/j.jlumin.2013.03.052

Fitting luminescence data

LumiSpy is compatible with HyperSpy model fitting#1.
It can fit using both uniform and and non-uniform axes#2
(e.g. energy scale). A general introduction can be found in the HyperSpy user guide#3.

TODO: Note on advantages of fitting signals in the eV axis (not restricted
to Gaussians). See e.g. [Wang]

TODO: Show how to extract the modeled signal with all/one component.

See also the LumiSpy demo notebooks#4
for examples of data fitting.

Signal variance (noise)

TODO: Documentation on variance handling in the context of fitting,
in particular using hyperspy.signal.BaseSignal.estimate_poissonian_noise_variance()#5

References

	Wang

	Y. Wang and P. D. Townsend, J. Luminesc. 142, 202
(2013). doi:10.1016/j.jlumin.2013.03.052#6

Footnotes

	#1

	https://hyperspy.org/hyperspy-doc/current/user_guide/model.html

	#2

	https://hyperspy.org/hyperspy-doc/current/user_guide/axes.html#types-of-data-axes

	#3

	https://hyperspy.org/hyperspy-doc/current/user_guide/model.html

	#4

	https://github.com/LumiSpy/lumispy-demos

	#5

	https://hyperspy.org/hyperspy-doc/current/api/hyperspy.signal.html#hyperspy.signal.BaseSignal.estimate_poissonian_noise_variance

	#6

	https://doi.org/10.1016/j.jlumin.2013.03.052

Utility functions

This section summarizes various useful functions implemented in LumiSpy.

Join spectra

In case several spectra (or spectral images) where subsequently recorded for
different, but overlapping spectral windows, LumiSpy provides a utility
join_spectra() to merge these into a single spectrum. The
main argument is a list of two or more spectral objects. Spectra are joined at
the centre of the overlapping range along the signal axis. To avoid steps in the
intensity, several parameters (see docstring: join_spectra())
allow to tune the scaling of the later signals with respect to the previous ones.
By default, the scaling parameter is determined as average ratio between the two
signals in the range of +/- 50 pixels around the centre of the overlapping region.

>>> import lumispy as lum
>>> s = lum.join_spectra((s1,s2))

Scaling and normalizing signal data

For comparative plotting or a detailed analysis, the intensity of spectra may
need to be either scaled by the respective integration times or
normalized. The luminescence signal classes provide these functionalities in the
methods scale_by_exposure() and
normalize().

Both functions can operate directly on the signal (inplace=True), but as default
a new signal is returned.

The scaling function can use the integration_time (unit: seconds) provided in the
LumiSpy metadata structure (metadata.Acqusition_instrument.Detector.integration_time).
Otherwise, the appropriate parameter has to be passed to the function.

>>> scaled = s.scale_by_exposure(integration_time=0.5, inplace=True)

Normalization is performed for the pixel with maximum intensity, Alternatively,
the parameter pos in calibrated units of the signal axis can be given to
normalize the intensity at this position. Normalization may be convenient for
plotting, but should usually not be performed on signals used as input for further
analysis (therefore the default is inplace=False).

>>> s.normalize(pos=450)

Replacing negative data values

Log-scale plotting fails in the presence of negative values in the dataset
(e.g. introduced after background removal). In this case, the utility function
remove_negative() replaces
all negative values in the data array by a basevalue (default basevalue=1).
The default operational mode is inplace=False (a new signal object is returned).

>>> s.remove_negative(0.1)

Utilities for spectral maps

The function crop_edges()
removes the specified number of pixels from all four edges of a spectral map.
It is a convenience wrapper for hyperspy.signal.BaseSignal.inav().

>>> s.crop_edges(crop_px=2)

[TODO: add possibility to crop different amounts of pixels on different sides]

Unit conversion

For convenience, LumiSpy provides functions that convert between different
units commonly used for the signal axis. Namely,

	nm2eV()

	eV2nm()

	nm2invcm()

	invcm2nm()

For the energy axis, the conversion uses the wavelength-dependent refractive
index of air.

Solving the grating equation

The function solve_grating_equation() follows the
conventions described in the tutorial from
Horiba Scientific#1.

Footnotes

	#1

	https://horiba.com/uk/scientific/products/optics-tutorial/wavelength-pixel-position

LumiSpy metadata structure

LumiSpy extends the HyperSpy metadata structure#1
with conventions for metadata specific to its signal types. Refer to the
HyperSpy metadata documentation#2
for general metadata fields.

The metadata of any signal objects is stored in the metadata attribute,
which has a tree structure. By convention, the node labels are capitalized and
the ones for leaves are not capitalized. When a leaf contains a quantity that
is not dimensionless, the units can be given in an extra leaf with the same
label followed by the _units suffix.

Besides directly accesing the metadata tree structure, e.g.
s.metadata.Signal.signal_type, the HyperSpy methods
hyperspy.misc.utils.DictionaryTreeBrowser.set_item()#3,
hyperspy.misc.utils.DictionaryTreeBrowser.has_item()#4 and
hyperspy.misc.utils.DictionaryTreeBrowser.get_item()#5
can be used to add to, search for and read from items in the metadata tree,
respectively.

The luminescence specific metadata structure is represented in the following
tree diagram. The default units are given in parentheses. Details about the
leaves can be found in the following sections of this chapter. Note that not
all types of leaves will apply to every type of measurement. For example,
while parallel acquisition with a CCD is characterized by the
central_wavelength, a serial acquisition with a PMT will require a
start_wavelength and a step_size.

metadata
├── General
│ └── # see HyperSpy
├── Sample
│ └── # see HyperSpy
├── Signal
│ ├── signal_type
│ ├── quantity
│ └── # otherwise see HyperSpy
└── Acquisition_instrument
 ├── Laser / SEM / TEM
 │ ├── laser_type
 │ ├── model
 │ ├── wavelength (nm)
 │ ├── power (mW)
 │ ├── objective_magnification
 │ ├── Filter
 │ │ ├── filter_type
 │ │ ├── position
 │ │ ├── optical_density
 │ │ ├── cut_on_wavelength (nm)
 │ │ └── cut_off_wavelength (nm)
 │ └── # for SEM/TEM see HyperSpy
 ├── Spectrometer
 │ ├── model
 │ ├── acquisition_mode
 │ ├── entrance_slit_width (mm)
 │ ├── exit_slit_width (mm)
 │ ├── central_wavelength (nm)
 │ ├── start_wavelength (nm)
 │ ├── step_size (nm)
 │ ├── Grating
 │ │ ├── groove_density (grooves/mm)
 │ │ ├── blazing_angle (º)
 │ │ └── blazing_wavelength (nm)
 │ └── Filter
 │ ├── filter_type
 │ ├── position
 │ ├── optical_density
 │ ├── cut_on_wavelength (nm)
 │ └── cut_off_wavelength (nm)
 ├── Detector
 │ ├── detector_type
 │ ├── model
 │ ├── frames
 │ ├── integration_time (s)
 │ ├── saturation_fraction
 │ ├── binning
 │ ├── processing
 │ ├── sensor_roi
 │ └── pixel_size (µm)
 └── Spectral_image
 ├── mode
 ├── drift_correction_periodicity
 └── drift_correction_units (s)

General

See HyperSpy-Metadata-General#6.

Sample

See HyperSpy-Metadata-Sample#7.

Signal

	signal_type
	type: string

String that describes the type of signal. The LumiSpy specific signal classes are
summarized under Signal types.

	quantity
	type: string

The name of the quantity of the “intensity axis” with the units in round brackets if
required, for example ‘Intensity (counts/s)’.

See HyperSpy-Metadata-Signal#8
for additional fields.

Acquisition Instrument

Laser / SEM / TEM

For SEM or TEM see HyperSpy-Metadata-SEM#9
or HyperSpy-Metadata-TEM#10.

Laser

	laser_type
	type: string

The type of laser used, e.g. ‘HeCd’.

	model
	type: string

Model of the laser (branding by manufacturer).

	wavelength
	type: float

Emission wavelength of the exciting laser in nm.

	power
	type: float

Measured power of the excitation laser in mW.

	magnification
	type: int

Magnification of the microscope objective used to focus the beam to the
sample.

Filter

Information about additional filters entered into the lightpath before the
sample. In case multiple filters are used, they should be numbered
Filter_1, etc.

	filter_type
	type: string

Type of filter (e.g. ‘optical density’, ‘short pass’, ‘long pass’,
‘bandpass’, ‘color’).

	position
	type: string

Position in the beam (e.g. ‘excitation’ vs. ‘detection’ in case of optical
excitation).

	optical_density
	type: float

Optical density in case of an intensity filter.

	cut_on_wavelength
	type: float

Cut on wavelength in nm in case of a long-pass or bandpass filter.

	cut_off_wavelength
	type: float

Cut off wavelength in nm in case of a short-pass or bandpass filter.

Spectrometer

Contains information about the spectrometer, configuration and grating used
for the measurement. In case multiple spectrometers are connected in series,
they should be numbered Spectrometer_1, etc.

	model
	type: string

Model of the spectrometer (branding by manufacturer).

	acquisition_mode
	type: string

Acquisition mode (e.g. ‘Parallel dispersive’, versus ‘Serial dispersive’).

	entrance_slit_width
	type: float

Width of the entrance slit in mm.

	exit_slit_width
	type: float

Width of the exit slit (serial acquisition) in mm.

	central_wavelength
	type: float

Central wavelength during acquisition (parallel acquisition).

	start_wavelength
	type: float

Start wavelength in nm (serial acquisition).

	step_size
	type: float

Step size in nm (serial acquisition).

Grating

Information of the dispersion grating employed in the measurement.

	groove_density
	type: int

Density of lines on the grating in grooves/mm.

	blazing_angle
	type: int

Angle in degree (º) that the grating is blazed at.

	blazing_wavelength
	type: int

Wavelength that the grating blaze is optimized for in nm.

Filter

Information about additional filters entered into the lightpath after the
sample. In case multiple filters are used, they should be numbered
Filter_1, etc. See filter-label above for details on items that
may potentially be included.

Detector

Contains information about the detector used to acquire the signal. Contained
leaves will differ depending on the type of detector.

	detector_type
	type: string

The type of detector used to acquire the signal (CCD, PMT, StreakCamera,
TCSPD).

	model
	type: string

The model of the used detector.

	frames
	type: int

Number of frames that are summed to yield the total integration time.

	integration_time (s)
	type: float

Time over which the signal is integrated. In case multiple frames are
summed, it is the total exposure time. In case of serial acquisition, it is
the dwell time per data point.

	saturation_fraction
	type: float

Fraction of the signal intensity compared with the saturation threshold of
the CCD.

	binning
	type: tuple of int

A tuple that describes the binning of a parallel detector such a CCD on
readout in x and y directions.

	processing
	type: string

Information about automatic processing performed on the data, e.g. ‘dark
subtracted’.

	sensor_roi
	type: tuple of int

Tuple of length 2 or 4 that specifies range of pixels on a detector that
are read out: (offset x, offset y, size x, size y) for a 2D array detector
and (offset, size) for a 1D line detector.

	pixel_size
	type: float or tuple of float

Size of a pixel in µm. Tuple of length 2 (width, height), when the pixel is
not square.

Spectral_image

Contains information about mapping parameters, such as step size, drift
correction, etc.

	mode
	type: string

Mode of the spectrum image acquisition such as ‘Map’ or ‘Linescan’.

	drift_correction_periodicity
	type: int/float

Periodicity of the drift correction in specified units (standard s).

	drift_correction_units
	type: string

Units of the drift correction such as ‘s’, ‘px’, ‘rows’.

Footnotes

	#1

	https://hyperspy.org/hyperspy-doc/current/user_guide/metadata_structure.html

	#2

	https://hyperspy.org/hyperspy-doc/current/user_guide/metadata_structure.html

	#3

	https://hyperspy.org/hyperspy-doc/current/api/hyperspy.misc.utils.html#hyperspy.misc.utils.DictionaryTreeBrowser.set_item

	#4

	https://hyperspy.org/hyperspy-doc/current/api/hyperspy.misc.utils.html#hyperspy.misc.utils.DictionaryTreeBrowser.has_item

	#5

	https://hyperspy.org/hyperspy-doc/current/api/hyperspy.misc.utils.html#hyperspy.misc.utils.DictionaryTreeBrowser.get_item

	#6

	https://hyperspy.org/hyperspy-doc/current/user_guide/metadata_structure.html#general

	#7

	https://hyperspy.org/hyperspy-doc/current/user_guide/metadata_structure.html#sample

	#8

	https://hyperspy.org/hyperspy-doc/current/user_guide/metadata_structure.html#sample

	#9

	https://hyperspy.org/hyperspy-doc/current/user_guide/metadata_structure.html#sem

	#10

	https://hyperspy.org/hyperspy-doc/current/user_guide/metadata_structure.html#tem

lumispy

	lumispy package
	Subpackages
	lumispy.signals package
	Submodules

	Module contents

	lumispy.utils package
	Submodules

	Module contents

	Module contents

Footnotes

lumispy package

Subpackages

	lumispy.signals package
	Submodules
	lumispy.signals.cl_spectrum module
	Signal class for cathodoluminescence spectral data

	CLSEMSpectrum

	CLSTEMSpectrum

	CLSpectrum

	LazyCLSEMSpectrum

	LazyCLSTEMSpectrum

	LazyCLSpectrum

	lumispy.signals.common_luminescence module
	Signal class for luminescence data (BaseSignal class)

	CommonLumi

	lumispy.signals.common_transient module
	Signal class for transient data (BaseSignal class)

	CommonTransient

	lumispy.signals.el_spectrum module
	Signal class for electroluminescence spectral data

	ELSpectrum

	LazyELSpectrum

	lumispy.signals.luminescence_spectrum module
	LazyLumiSpectrum

	LumiSpectrum

	lumispy.signals.luminescence_transient module
	Signal class for luminescence transient data (1D)

	LazyLumiTransient

	LumiTransient

	lumispy.signals.luminescence_transientspec module
	Signal class for luminescence transient data (2D)

	LazyLumiTransientSpectrum

	LumiTransientSpectrum

	lumispy.signals.pl_spectrum module
	Signal class for Photoluminescence spectral data

	LazyPLSpectrum

	PLSpectrum

	Module contents

	lumispy.utils package
	Submodules
	lumispy.utils.axes module
	_n_air()

	axis2eV()

	axis2invcm()

	data2eV()

	data2invcm()

	eV2nm()

	invcm2nm()

	join_spectra()

	nm2eV()

	nm2invcm()

	solve_grating_equation()

	var2eV()

	var2invcm()

	lumispy.utils.io module
	savetxt()

	to_array()

	Module contents

Module contents

Footnotes

lumispy.signals package

Submodules

	lumispy.signals.cl_spectrum module
	Signal class for cathodoluminescence spectral data

	CLSEMSpectrum
	CLSEMSpectrum.correct_grating_shift()

	CLSTEMSpectrum

	CLSpectrum
	CLSpectrum._make_signal_mask()

	CLSpectrum.remove_spikes()

	LazyCLSEMSpectrum

	LazyCLSTEMSpectrum

	LazyCLSpectrum

	lumispy.signals.common_luminescence module
	Signal class for luminescence data (BaseSignal class)

	CommonLumi
	CommonLumi.crop_edges()

	CommonLumi.normalize()

	CommonLumi.remove_negative()

	CommonLumi.scale_by_exposure()

	lumispy.signals.common_transient module
	Signal class for transient data (BaseSignal class)

	CommonTransient

	lumispy.signals.el_spectrum module
	Signal class for electroluminescence spectral data

	ELSpectrum

	LazyELSpectrum

	lumispy.signals.luminescence_spectrum module
	LazyLumiSpectrum

	LumiSpectrum
	LumiSpectrum._reset_variance_linear_model()

	LumiSpectrum.px_to_nm_grating_solver()

	LumiSpectrum.remove_background_from_file()

	LumiSpectrum.savetxt()

	LumiSpectrum.to_array()

	LumiSpectrum.to_eV()

	LumiSpectrum.to_invcm()

	LumiSpectrum.to_invcm_relative()

	LumiSpectrum.to_raman_shift()

	lumispy.signals.luminescence_transient module
	Signal class for luminescence transient data (1D)

	LazyLumiTransient

	LumiTransient

	lumispy.signals.luminescence_transientspec module
	Signal class for luminescence transient data (2D)

	LazyLumiTransientSpectrum

	LumiTransientSpectrum

	lumispy.signals.pl_spectrum module
	Signal class for Photoluminescence spectral data

	LazyPLSpectrum

	PLSpectrum

Module contents

Footnotes

lumispy.signals.cl_spectrum module

Signal class for cathodoluminescence spectral data

	
class lumispy.signals.cl_spectrum.CLSEMSpectrum(*args, **kwargs)

	Bases: CLSpectrum

1D scanning electron microscopy cathodoluminescence signal class.

	
correct_grating_shift(cal_factor_x_axis, corr_factor_grating, sem_magnification, **kwargs)

	Applies shift caused by the grating offset wrt the scanning centre.
Authorship: Gunnar Kusch (gk419@cam.ac.uk)

	Parameters

	
	cal_factor_x_axis – The navigation correction factor.

	corr_factor_grating – The grating correction factor.

	sem_magnification – The SEM (real) magnification value.
For the Attolight original metadata, take the SEM.Real_Magnification value

	kwargs – The parameters passed to hyperspy.align1D() function like:
interpolation_method (‘linear’, ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic, ‘cubic’)
parallel: Bool
crop, expand, fill_value …

	
class lumispy.signals.cl_spectrum.CLSTEMSpectrum(*args, **kwargs)

	Bases: CLSpectrum

1D scanning transmission electron microscopy cathodoluminescence signal class.

	
class lumispy.signals.cl_spectrum.CLSpectrum(*args, **kwargs)

	Bases: LumiSpectrum

General 1D cathodoluminescence signal class.

	
_make_signal_mask(luminescence_roi)

	Creates a mask from the peak position and peak widths of the
luminescence spectrum.

	Parameters

	luminescence_roi (array) – In the form of an array of pairwise elements
[[peak1_x, peak1_width], [peak2_x, peak2_width],…].

	Returns

	A signal_mask.

	Return type

	array

	
remove_spikes(threshold='auto', show_diagnosis_histogram=False, inplace=False, luminescence_roi=None, signal_mask=None, add_noise=False, navigation_mask=None, interactive=False, **kwargs)

	HyperSpy-based spike removal tool adapted to
LumiSpy to run non-interactively and without noise addition by default.
Graphical interface to remove spikes from EELS spectra or
luminescence data.
If non-interactive, it removes all spikes and returns a
~hyperspy.signals._signal_tools.SpikesRemoval object.

	Parameters

	
	signal_mask (bool array) – Restricts the operation to the signal locations not marked
as True (masked).

	navigation_mask (bool array) – Restricts the operation to the navigation locations not marked
as True (masked).

	threshold ('auto' or int#1) – if int set the threshold value use for the detecting the spikes.
If auto, determine the threshold value as being the first zero
value in the histogram obtained from the
spikes_diagnosis()
method.

	interactive (bool#2) – If True, remove the spikes using the graphical user interface.
If False, remove all the spikes automatically, which can
introduce artefacts if used with signal containing peak-like
features. However, this can be mitigated by using the
signal_mask argument to mask the signal of interest.

	display (bool#3) – If True, display the user interface widgets. If False, return the
widgets container in a dictionary, usually for customisation or
testing.

	toolkit (str#4, iterable of strings or None) – If None (default), all available widgets are displayed or returned.
If string, only the widgets of the selected toolkit are displayed
if available. If an interable of toolkit strings, the widgets of
all listed toolkits are displayed or returned.

	**kwargs (dict#5) –
	Keyword arguments pass to
	SpikesRemoval()

See also

spikes_diagnosis()

	Parameters

	
	show_diagnosis_histogram (bool#6) – Plot or not the derivative histogram to show the magnitude of the spikes present.

	inplace (bool#7) – If False, a new signal object is created and returned. If True, the original signal object is modified.

	luminescence_roi (array) – The peak position and peak widths of the peaks in the luminescence spectrum.
In the form of an array of pairwise elements [[peak1_x, peak1_width], [peak2_x, peak2_width],…]
in the units of the signal axis. It creates a signal_mask protecting the peak regions.
To be used instead of signal_mask.

	Returns

	Depends on inplace, returns or overwrites the CLSpectrum after spike removal.

	Return type

	None or CLSpectrum

	
class lumispy.signals.cl_spectrum.LazyCLSEMSpectrum(*args, **kwargs)

	Bases: LazySignal#8, CLSEMSpectrum

Lazy 1D scanning electron microscopy cathodoluminescence signal class.

	
class lumispy.signals.cl_spectrum.LazyCLSTEMSpectrum(*args, **kwargs)

	Bases: LazySignal#9, CLSTEMSpectrum

Lazy 1D scanning transmission electron microscopy cathodoluminescence signal class.

	
class lumispy.signals.cl_spectrum.LazyCLSpectrum(*args, **kwargs)

	Bases: LazySignal#10, CLSpectrum

General lazy 1D cathodoluminescence signal class.

Footnotes

	#1

	https://docs.python.org/3/library/functions.html#int

	#2

	https://docs.python.org/3/library/functions.html#bool

	#3

	https://docs.python.org/3/library/functions.html#bool

	#4

	https://docs.python.org/3/library/stdtypes.html#str

	#5

	https://docs.python.org/3/library/stdtypes.html#dict

	#6

	https://docs.python.org/3/library/functions.html#bool

	#7

	https://docs.python.org/3/library/functions.html#bool

	#8

	https://hyperspy.org/hyperspy-doc/current/api/hyperspy._signals.lazy.html#hyperspy._signals.lazy.LazySignal

	#9

	https://hyperspy.org/hyperspy-doc/current/api/hyperspy._signals.lazy.html#hyperspy._signals.lazy.LazySignal

	#10

	https://hyperspy.org/hyperspy-doc/current/api/hyperspy._signals.lazy.html#hyperspy._signals.lazy.LazySignal

lumispy.signals.common_luminescence module

Signal class for luminescence data (BaseSignal class)

	
class lumispy.signals.common_luminescence.CommonLumi

	Bases: object#1

General luminescence signal class (dimensionless)

	
crop_edges(crop_px)

	Crop the amount of pixels from the four edges of the scanning
region, from out the edges inwards.

	Parameters

	crop_px (int#2) – Amount of pixels to be cropped on each side individually.

	Returns

	signal_cropped – A smaller cropped CL signal object. If inplace is True, the original
object is modified and no LumiSpectrum is returned.

	Return type

	CommonLuminescence

	
normalize(pos=nan, element_wise=False, inplace=False)

	Normalizes data to value at pos along signal axis, defaults to
maximum value.

Can be helpful for e.g. plotting, but does not make sense to use
on signals that will be used as input for further calculations!

	Parameters

	
	pos (float#3, int#4) – If ‘nan’ (default), spectra are normalized to the maximum.
If float, position along signal axis in calibrated units at which
to normalize the spectra.
If int, index along signal axis at which to normalize the spectra.

	element_wise (boolean) – If False (default), a spectrum image is normalized by a common factor.
If True, each spectrum is normalized individually.

	inplace (boolean) – If False (default), a new signal object is created and returned.
If True, the operation is performed on the existing signal object.

Notes

Sets metadata.Signal.normalized to True. If
metadata.Signal.quantity contains the word ‘Intensity’, replaces this
field with ‘Normalized intensity’.

	
remove_negative(basevalue=1, inplace=False)

	Sets all negative values to ‘basevalue’, e.g. for logarithmic scale
plots.

	Parameters

	
	basevalue (float#5) – Value by which negative values are replaced (default = 1).

	inplace (boolean) – If False (default), a new signal object is created and returned.
Otherwise, the operation is performed on the existing signal object.

Notes

Sets metadata.Signal.negative_removed to True.

	
scale_by_exposure(integration_time=None, inplace=False, **kwargs)

	Scale data in spectrum by integration time / exposure,
(e.g. convert counts to counts/s).

	Parameters

	
	integration_time (float#6) – Integration time (exposure) in s. If not given, the function tries to
use the ‘metadata.Acqusition_instrument.Detector.integration_time’
field or alternatively find any ‘integration_time’, ‘exposure’ or
‘dwell_time’ fields in the original_metadata.

	inplace (boolean) – If False (default), a new signal object is created and returned.
If True, the operation is performed on the existing signal object.

Notes

Sets metadata.Signal.scaled to True. If intensity units is ‘counts’,
replaces them by ‘counts/s’.

Deprecated since version 0.2: The exposure argument was renamed integration_time, and it will
be removed in LumiSpy 1.0.

Footnotes

	#1

	https://docs.python.org/3/library/functions.html#object

	#2

	https://docs.python.org/3/library/functions.html#int

	#3

	https://docs.python.org/3/library/functions.html#float

	#4

	https://docs.python.org/3/library/functions.html#int

	#5

	https://docs.python.org/3/library/functions.html#float

	#6

	https://docs.python.org/3/library/functions.html#float

lumispy.signals.common_transient module

Signal class for transient data (BaseSignal class)

	
class lumispy.signals.common_transient.CommonTransient

	Bases: object#1

General transient signal class (dimensionless)

Footnotes

	#1

	https://docs.python.org/3/library/functions.html#object

lumispy.signals.el_spectrum module

Signal class for electroluminescence spectral data

	
class lumispy.signals.el_spectrum.ELSpectrum(*args, **kwargs)

	Bases: LumiSpectrum

General 1D electroluminescence signal class

	
class lumispy.signals.el_spectrum.LazyELSpectrum(*args, **kwargs)

	Bases: LazySignal#1, ELSpectrum

General lazy 1D electroluminescence signal class

Footnotes

	#1

	https://hyperspy.org/hyperspy-doc/current/api/hyperspy._signals.lazy.html#hyperspy._signals.lazy.LazySignal

lumispy.signals.luminescence_spectrum module

Signal class for Luminescence spectral data (1D).

	
class lumispy.signals.luminescence_spectrum.LazyLumiSpectrum(*args, **kwargs)

	Bases: LazySignal#1, LumiSpectrum

General lazy 1D luminescence signal class.

	
class lumispy.signals.luminescence_spectrum.LumiSpectrum(*args, **kwargs)

	Bases: Signal1D#2, CommonLumi

General 1D luminescence signal class.

	
_reset_variance_linear_model()

	Resets the variance linear model parameters to their default values,
as they are not applicable any longer after a Jacobian transformation.

	
px_to_nm_grating_solver(gamma_deg, deviation_angle_deg, focal_length_mm, ccd_width_mm, grating_central_wavelength_nm, grating_density_gr_mm, inplace=False)

	Converts signal axis of 1D signal (in pixels) to wavelength, solving
the grating equation. See lumispy.axes.solve_grating_equation for
more details.

	Parameters

	
	gamma_deg (float#3) – Inclination angle between the focal plane and the centre of the grating
(found experimentally from calibration). In degree.

	deviation_angle_deg (float#4) – Also known as included angle. It is defined as the difference between
angle of diffraction ([image: \beta]) and angle of incidence
([image: \alpha]). Given by manufacturer specsheet. In degree.

	focal_length_mm (float#5) – Given by manufacturer specsheet. In mm.

	ccd_width_mm (float#6) – The width of the CDD. Given by manufacturer specsheet. In mm.

	grating_central_wavelength_nm (float#7) – Wavelength at the centre of the grating, where exit slit is placed. In nm.

	grating_density_gr_mm (int#8) – Grating density in gratings per mm.

	inplace (bool#9) – If False, it returns a new object with the transformation. If
True, the original object is transformed, returning no object.

	Returns

	signal – A signal with calibrated wavelength units.

	Return type

	LumiSpectrum

Examples

>>> s = LumiSpectrum(np.ones(20),))
>>> s.px_to_nm_grating_solver(*params, inplace=True)
>>> s.axes_manager.signal_axes[0].units == 'nm'

	
remove_background_from_file(background=None, inplace=False, **kwargs)

	Subtract the background to the signal in all navigation axes. If no
background file is passed as argument, the remove_background() from
HyperSpy is called with the GUI.

	Parameters

	
	background (array shape (2, n) or Signal1D) – An array containing the background x-axis and the intensity values
[[xs],[ys]] or a Signal1D object. If the x-axis values do not match
the signal_axes, then interpolation is done before subtraction. If
only the intensity values are provided, [ys], the functions assumes
no interpolation needed.

	inplace (boolean) – If False, it returns a new object with the transformation. If True,
the original object is transformed, returning no object.

	Returns

	signal – A background subtracted signal.

	Return type

	LumiSpectrum

Notes

This function does not work with non-uniform axes.

	
savetxt(filename, fmt='%.5f', delimiter='\t', axes=True, transpose=False, **kwargs)

	Writes luminescence spectrum object to simple text file.

Writes single spectra to a two-column data file with signal axis as
X and data as Y.
Writes linescan data to file with signal axis as first row and
navigation axis as first column (flipped if transpose=True).

	Parameters

	
	filename (string) –

	fmt (str#10 or sequence of strs, optional) – A single or sequence of format strings. Default is ‘%.5f’.

	delimiter (str#11, optional) – String or character separating columns. Default is ‘,’

	axes (bool#12, optional) – If True (default), include axes in saved file. If False, save the data
array only.

	transpose (bool#13, optional) – If True, transpose data array and exchange axes. Default is false.
Ignored for single spectra.

	**kwargs – Takes any additional arguments of numpy.loadtxt, e.g. newline
header, footer, comments, or encoding.

See also

numpy.savetxt#14

Examples

>>> import lumispy as lum
>>> import numpy as np
...
>>> # Spectrum:
>>> S = lum.signals.LumiSpectrum(np.arange(5))
>>> S.savetxt('spectrum.txt')
0.00000 0.00000
1.00000 1.00000
2.00000 2.00000
3.00000 3.00000
4.00000 4.00000
...
>>> # Linescan:
>>> L = lum.signals.LumiSpectrum(np.arange(25).reshape((5,5)))
>>> L.savetxt('linescan.txt')
0.00000 0.00000 1.00000 2.00000 3.00000 4.00000
0.00000 0.00000 5.00000 10.00000 15.00000 20.00000
1.00000 1.00000 6.00000 11.00000 16.00000 21.00000
2.00000 2.00000 7.00000 12.00000 17.00000 22.00000
3.00000 3.00000 8.00000 13.00000 18.00000 23.00000
4.00000 4.00000 9.00000 14.00000 19.00000 24.00000

	
to_array(axes=True, transpose=False)

	
	Returns luminescence spectrum object as numpy array (optionally
	including the axes).

Returns single spectra as two-column array.
Returns linescan data as array with signal axis as first row and
navigation axis as first column (flipped if transpose=True).

	Parameters

	
	axes (bool#15, optional) – If True (default), include axes in array. If False, return the data
array only.

	transpose (bool#16, optional) – If True, transpose data array and exchange axes. Default is false.
Ignored for single spectra.

	**kwargs – Takes any additional arguments of numpy.loadtxt, e.g. newline
header, footer, comments, or encoding.

Notes

The output of this function can be used to convert a signal object to a
pandas dataframe, e.g. using df = pd.Dataframe(S.to_array()).

Examples

>>> import lumispy as lum
>>> import numpy as np
...
>>> # Spectrum:
>>> S = lum.signals.LumiSpectrum(np.arange(5))
>>> S.to_array()
array([[0., 0.],
 [1., 1.],
 [2., 2.],
 [3., 3.],
 [4., 4.]])
...
>>> # Linescan:
>>> L = lum.signals.LumiSpectrum(np.arange(25).reshape((5,5)))
>>> L.to_array()
array([[0., 0., 1., 2., 3., 4.],
 [0., 0., 1., 2., 3., 4.],
 [1., 5., 6., 7., 8., 9.],
 [2., 10., 11., 12., 13., 14.],
 [3., 15., 16., 17., 18., 19.],
 [4., 20., 21., 22., 23., 24.]])

	
to_eV(inplace=True, jacobian=True)

	Converts signal axis of 1D signal to non-linear energy axis (eV)
using wavelength dependent refractive index of air. Assumes wavelength
in units of nm unless the axis units are specifically set to µm.

The intensity is converted from counts/nm (counts/µm) to counts/meV by
doing a Jacobian transformation, see e.g. Mooney and Kambhampati, J.
Phys. Chem. Lett. 4, 3316 (2013), doi:10.1021/jz401508t, which ensures
that integrated signals are correct also in the energy domain. If the
variance of the signal is known, i.e.
metadata.Signal.Noise_properties.variance is a signal representing
the variance, a squared renormalization of the variance is performed.
Note that if the variance is a number (not a signal instance), it is
converted to a signal if the Jacobian transformation is performed

	Parameters

	
	inplace (boolean) – If False, a new signal object is created and returned. Otherwise
(default) the operation is performed on the existing signal object.

	jacobian (boolean) – The default is to do the Jacobian transformation (recommended at
least for luminescence signals), but the transformation can be
suppressed by setting this option to False.

Examples

>>> import numpy as np
>>> from lumispy import LumiSpectrum
>>> S1 = LumiSpectrum(np.ones(20), DataAxis(axis = np.arange(200,400,10)),))
>>> S1.to_eV()

	
to_invcm(inplace=True, jacobian=True)

	Converts signal axis of 1D signal to non-linear wavenumber axis
(cm^-1). Assumes wavelength in units of nm unless the axis units are
specifically set to µm.

The intensity is converted from counts/nm (counts/µm) to counts/cm^-1
by doing a Jacobian transformation, see e.g. Mooney and Kambhampati,
J. Phys. Chem. Lett. 4, 3316 (2013), doi:10.1021/jz401508t, which
ensures that integrated signals are correct also in the wavenumber
domain. If the variance of the signal is known, i.e.
metadata.Signal.Noise_properties.variance is a signal representing the
variance, a squared renormalization of the variance is performed.
Note that if the variance is a number (not a signal instance), it is
converted to a signal if the Jacobian transformation is performed

	Parameters

	
	inplace (boolean) – If False, a new signal object is created and returned. Otherwise
(default) the operation is performed on the existing signal object.

	jacobian (boolean) – The default is to do the Jacobian transformation (recommended at
least for luminescence signals), but the transformation can be
suppressed by setting this option to False.

Examples

>>> import numpy as np
>>> from lumispy import LumiSpectrum
>>> S1 = LumiSpectrum(np.ones(20), DataAxis(axis = np.arange(200,400,10)),))
>>> S1.to_invcm()

	
to_invcm_relative(laser=None, inplace=True, jacobian=False)

	Converts signal axis of 1D signal to non-linear wavenumber axis
(cm^-1) relative to the exciting laser wavelength (Raman/Stokes
shift). Assumes wavelength in units of nm unless the axis units are
specifically set to µm.

The intensity is converted from counts/nm (counts/µm) to counts/cm^-1
by doing a Jacobian transformation, see e.g. Mooney and Kambhampati,
J. Phys. Chem. Lett. 4, 3316 (2013), doi:10.1021/jz401508t, which
ensures that integrated signals are correct also in the wavenumber
domain. If the variance of the signal is known, i.e.
metadata.Signal.Noise_properties.variance is a signal representing the
variance, a squared renormalization of the variance is performed.
Note that if the variance is a number (not a signal instance), it is
converted to a signal if the Jacobian transformation is performed

	Parameters

	
	inplace (boolean) – If False, a new signal object is created and returned. Otherwise
(default) the operation is performed on the existing signal object.

	laser (float#17 or None) – Laser wavelength in the same units as the signal axis. If None
(default), checks if it is stored in
metadata.Acquisition_instrument.Laser.wavelength.

	jacobian (boolean) – The default is not to do the Jacobian transformation for Raman
shifts, but the transformation can be activated by setting this
option to True.

Examples

>>> import numpy as np
>>> from lumispy import LumiSpectrum
>>> S1 = LumiSpectrum(np.ones(20), DataAxis(axis = np.arange(200,400,10)),))
>>> S1.to_invcm(laser=325)

	
to_raman_shift(laser=None, inplace=True, jacobian=False)

	Converts signal axis of 1D signal to non-linear wavenumber axis
(cm^-1) relative to the exciting laser wavelength (Raman/Stokes
shift). Assumes wavelength in units of nm unless the axis units are
specifically set to µm.

The intensity is converted from counts/nm (counts/µm) to counts/cm^-1
by doing a Jacobian transformation, see e.g. Mooney and Kambhampati,
J. Phys. Chem. Lett. 4, 3316 (2013), doi:10.1021/jz401508t, which
ensures that integrated signals are correct also in the wavenumber
domain. If the variance of the signal is known, i.e.
metadata.Signal.Noise_properties.variance is a signal representing the
variance, a squared renormalization of the variance is performed.
Note that if the variance is a number (not a signal instance), it is
converted to a signal if the Jacobian transformation is performed

	Parameters

	
	inplace (boolean) – If False, a new signal object is created and returned. Otherwise
(default) the operation is performed on the existing signal object.

	laser (float#18 or None) – Laser wavelength in the same units as the signal axis. If None
(default), checks if it is stored in
metadata.Acquisition_instrument.Laser.wavelength.

	jacobian (boolean) – The default is not to do the Jacobian transformation for Raman
shifts, but the transformation can be activated by setting this
option to True.

Examples

>>> import numpy as np
>>> from lumispy import LumiSpectrum
>>> S1 = LumiSpectrum(np.ones(20), DataAxis(axis = np.arange(200,400,10)),))
>>> S1.to_invcm(laser=325)

Footnotes

	#1

	https://hyperspy.org/hyperspy-doc/current/api/hyperspy._signals.lazy.html#hyperspy._signals.lazy.LazySignal

	#2

	https://hyperspy.org/hyperspy-doc/current/api/hyperspy._signals.signal1d.html#hyperspy._signals.signal1d.Signal1D

	#3

	https://docs.python.org/3/library/functions.html#float

	#4

	https://docs.python.org/3/library/functions.html#float

	#5

	https://docs.python.org/3/library/functions.html#float

	#6

	https://docs.python.org/3/library/functions.html#float

	#7

	https://docs.python.org/3/library/functions.html#float

	#8

	https://docs.python.org/3/library/functions.html#int

	#9

	https://docs.python.org/3/library/functions.html#bool

	#10

	https://docs.python.org/3/library/stdtypes.html#str

	#11

	https://docs.python.org/3/library/stdtypes.html#str

	#12

	https://docs.python.org/3/library/functions.html#bool

	#13

	https://docs.python.org/3/library/functions.html#bool

	#14

	https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html#numpy.savetxt

	#15

	https://docs.python.org/3/library/functions.html#bool

	#16

	https://docs.python.org/3/library/functions.html#bool

	#17

	https://docs.python.org/3/library/functions.html#float

	#18

	https://docs.python.org/3/library/functions.html#float

lumispy.signals.luminescence_transient module

Signal class for luminescence transient data (1D)

	
class lumispy.signals.luminescence_transient.LazyLumiTransient(*args, **kwargs)

	Bases: LazySignal#1, LumiTransient

General lazy 1D luminescence signal class (transient/time resolved)

	
class lumispy.signals.luminescence_transient.LumiTransient(*args, **kwargs)

	Bases: Signal1D#2, CommonTransient

General 1D luminescence signal class (transient/time resolved)

Footnotes

	#1

	https://hyperspy.org/hyperspy-doc/current/api/hyperspy._signals.lazy.html#hyperspy._signals.lazy.LazySignal

	#2

	https://hyperspy.org/hyperspy-doc/current/api/hyperspy._signals.signal1d.html#hyperspy._signals.signal1d.Signal1D

lumispy.signals.luminescence_transientspec module

Signal class for luminescence transient data (2D)

	
class lumispy.signals.luminescence_transientspec.LazyLumiTransientSpectrum(*args, **kwargs)

	Bases: LazySignal#1, LumiTransientSpectrum

General lazy 2D luminescence signal class (transient/time resolved)

	
class lumispy.signals.luminescence_transientspec.LumiTransientSpectrum(*args, **kwargs)

	Bases: Signal2D#2, CommonLumi, CommonTransient

General 2D luminescence signal class (transient/time resolved)

Footnotes

	#1

	https://hyperspy.org/hyperspy-doc/current/api/hyperspy._signals.lazy.html#hyperspy._signals.lazy.LazySignal

	#2

	https://hyperspy.org/hyperspy-doc/current/api/hyperspy._signals.signal2d.html#hyperspy._signals.signal2d.Signal2D

lumispy.signals.pl_spectrum module

Signal class for Photoluminescence spectral data

	
class lumispy.signals.pl_spectrum.LazyPLSpectrum(*args, **kwargs)

	Bases: LazySignal#1, PLSpectrum

General lazy 1D photoluminescence signal class

	
class lumispy.signals.pl_spectrum.PLSpectrum(*args, **kwargs)

	Bases: LumiSpectrum

General 1D photoluminescence signal class

Footnotes

	#1

	https://hyperspy.org/hyperspy-doc/current/api/hyperspy._signals.lazy.html#hyperspy._signals.lazy.LazySignal

lumispy.utils package

Submodules

	lumispy.utils.axes module
	_n_air()

	axis2eV()

	axis2invcm()

	data2eV()

	data2invcm()

	eV2nm()

	invcm2nm()

	join_spectra()

	nm2eV()

	nm2invcm()

	solve_grating_equation()

	var2eV()

	var2invcm()

	lumispy.utils.io module
	savetxt()

	to_array()

Module contents

Footnotes

lumispy.utils.axes module

	
lumispy.utils.axes._n_air(x)

	Refractive index of air as a function of WL in nm.
This analytical function is correct for the range 185-1700 nm.
According to E.R. Peck and K. Reeder. Dispersion of air,
J. Opt. Soc. Am. 62, 958-962 (1972).

	
lumispy.utils.axes.axis2eV(ax0)

	Converts given signal axis to energy scale (eV) using wavelength
dependent refractive index of air. Assumes wavelength in units of nm unless the
axis units are specifically set to µm.

	
lumispy.utils.axes.axis2invcm(ax0)

	Converts given signal axis to wavenumber scale (cm$^{-1}$). Assumes
wavelength in units of nm unless the axis units are specifically set to µm.

	
lumispy.utils.axes.data2eV(data, factor, ax0, evaxis)

	The intensity is converted from counts/nm (counts/µm) to counts/meV by
doing a Jacobian transformation, see e.g. Mooney and Kambhampati, J. Phys.
Chem. Lett. 4, 3316 (2013). Ensures that integrated signals are still
correct.

	
lumispy.utils.axes.data2invcm(data, factor, invcmaxis)

	The intensity is converted from counts/nm (counts/µm) to
counts/cm$^{-1}$ by doing a Jacobian transformation, see e.g. Mooney and
Kambhampati, J. Phys. Chem. Lett. 4, 3316 (2013). Ensures that integrated
signals are still correct.

	
lumispy.utils.axes.eV2nm(x)

	Converts energy (eV) to wavelength (nm) using wavelength-dependent
refractive index of air.

	
lumispy.utils.axes.invcm2nm(x)

	Converts wavenumber (cm$^{-1}$) to wavelength (nm).

	
lumispy.utils.axes.join_spectra(S, r=50, scale=True, average=False, kind='slinear')

	Takes list of Signal1D objects and returns a single object with all
spectra joined. Joins spectra at the center of the overlapping range.
Scales spectra by a factor determined as average over the range
center -/+ r pixels. Works both for uniform and non-uniform axes
(FunctionalDataAxis is converted into a non-uniform DataAxis).

	Parameters

	
	S (list#1 of Signal1D objects (with overlapping signal axes)) –

	r (int#2, optional) – Number of pixels left/right of center (default 50) defining the range
over which to determine the scaling factor, has to be less than half
of the overlapping pixels. Change the size of r or use average=True
if the function induces a step in the intensity.

	scale (boolean, optional) – If True (default), the later spectra in the list are scaled by a
factor determined over center -/+ r pixels. If False, spectra are
joined without scaling, which will likely induce a step unless
average=True.

	average (boolean, optional) – If True, the contribution of the two signals is continuously graded
within the range defined by r instead of joining at the center of
the range (default).

	kind (str#3, optional) – Interpolation method (default ‘slinear’) to use when joining signals
with a uniform signal axes. See scipy.interpolate.interp1d for
options.

	Returns

	
	A new Signal1D object containing the joined spectra (properties are copied

	from first spectrum).

Examples

>>> s1 = hs.signals.Signal1D(np.ones(32))
>>> s2 = hs.signals.Signal1D(np.ones(32)*2)
>>> s2.axes_manager.signal_axes[0].offset = 25
>>> lum.join_spectra([s1,s2],r=2)
<Signal1D, title: , dimensions: (|57)>

	
lumispy.utils.axes.nm2eV(x)

	Converts wavelength (nm) to energy (eV) using wavelength-dependent
refractive index of air.

	
lumispy.utils.axes.nm2invcm(x)

	Converts wavelength (nm) to wavenumber (cm$^{-1}$).

	
lumispy.utils.axes.solve_grating_equation(axis, gamma_deg, deviation_angle_deg, focal_length_mm, ccd_width_mm, grating_central_wavelength_nm, grating_density_gr_mm)

	Solves the grating equation.
See horiba.com/uk/scientific/products/optics-tutorial/wavelength-pixel-position
for equations.

	Parameters

	
	axis (hyperspy.axis) – Axis in pixel units (no units) to convert to wavelength.

	gamma_deg (float#4) – Inclination angle between the focal plane and the centre of the grating
(found experimentally from calibration). In degree.

	deviation_angle_deg (float#5) – Also known as included angle. It is defined as the difference between
angle of diffraction ([image: \beta]) and angle of incidence
([image: \alpha]). Given by manufacturer specsheet. In degree.

	focal_length_mm (float#6) – Given by manufacturer specsheet. In mm.

	ccd_width_mm (float#7) – The width of the CDD. Given by manufacturer specsheet. In mm.

	grating_central_wavelength_nm (float#8) – Wavelength at the centre of the grating, where exit slit is placed. In nm.

	grating_density_gr_mm (int#9) – Grating density in gratings per mm.

	Returns

	axis – HyperSpy axis object.

	Return type

	hyperspy.axis

	
lumispy.utils.axes.var2eV(variance, factor, ax0, evaxis)

	The variance is converted doing a squared Jacobian renormalization to
match with the transformation of the data.

	
lumispy.utils.axes.var2invcm(variance, factor, invcmaxis)

	The variance is converted doing a squared Jacobian renormalization to
match with the transformation of the data.

Footnotes

	#1

	https://docs.python.org/3/library/stdtypes.html#list

	#2

	https://docs.python.org/3/library/functions.html#int

	#3

	https://docs.python.org/3/library/stdtypes.html#str

	#4

	https://docs.python.org/3/library/functions.html#float

	#5

	https://docs.python.org/3/library/functions.html#float

	#6

	https://docs.python.org/3/library/functions.html#float

	#7

	https://docs.python.org/3/library/functions.html#float

	#8

	https://docs.python.org/3/library/functions.html#float

	#9

	https://docs.python.org/3/library/functions.html#int

lumispy.utils.io module

	
lumispy.utils.io.savetxt(S, filename, fmt='%.5f', delimiter='\t', axes=True, transpose=False, **kwargs)

	Writes signal object to simple text file.

Writes single spectra to a two-column data file with signal axis as
X and data as Y.
Writes linescan data to file with signal axis as first row and
navigation axis as first column (flipped if transpose=True).
Writes image to file with the navigation axes as first column and first
row.
Writes 2D data (e.g. map of a fit parameter value) to file with the signal
axes as first column and first row.

	Parameters

	
	filename (string) –

	fmt (str#1 or sequence of strs, optional) – A single or sequence of format strings. Default is ‘%.5f’.

	delimiter (str#2, optional) – String or character separating columns. Default is ‘,’

	axes (bool#3, optional) – If True (default), include axes in saved file. If False, save the data
array only.

	transpose (bool#4, optional) – If True, transpose data array and exchange axes. Default is false.
Ignored for single spectra.

	**kwargs – Takes any additional arguments of numpy.loadtxt, e.g. newline
header, footer, comments, or encoding.

See also

numpy.savetxt#5

Examples

>>> import lumispy as lum
>>> import numpy as np
...
>>> # Spectrum:
>>> S = lum.signals.LumiSpectrum(np.arange(5))
>>> lum.savetxt(S, 'spectrum.txt')
0.00000 0.00000
1.00000 1.00000
2.00000 2.00000
3.00000 3.00000
4.00000 4.00000
...
>>> # Linescan:
>>> L = lum.signals.LumiSpectrum(np.arange(25).reshape((5,5)))
>>> lum.savetxt(L, 'linescan.txt')
0.00000 0.00000 1.00000 2.00000 3.00000 4.00000
0.00000 0.00000 5.00000 10.00000 15.00000 20.00000
1.00000 1.00000 6.00000 11.00000 16.00000 21.00000
2.00000 2.00000 7.00000 12.00000 17.00000 22.00000
3.00000 3.00000 8.00000 13.00000 18.00000 23.00000
4.00000 4.00000 9.00000 14.00000 19.00000 24.00000

	
lumispy.utils.io.to_array(S, axes=True, transpose=False)

	Returns signal object as numpy array (optionally including the axes).

Returns single spectra as two-column array.
Returns linescan data as array with signal axis as first row and
navigation axis as first column (flipped if transpose=True).
Returns image as array with the navigation axes as first column and first
row.
Returns 2D data (e.g. map of a fit parameter value) as array with the signal
axes as first column and first row.

	Parameters

	
	axes (bool#6, optional) – If True (default), include axes in array. If False, return the data
array only.

	transpose (bool#7, optional) – If True, transpose data array and exchange axes. Default is false.
Ignored for single spectra.

	**kwargs – Takes any additional arguments of numpy.loadtxt, e.g. newline
header, footer, comments, or encoding.

Notes

The output of this function can be used to convert a signal object to a
pandas dataframe, e.g. using df = pd.Dataframe(lum.to_array(S)).

Examples

>>> import lumispy as lum
>>> import numpy as np
...
>>> # Spectrum:
>>> S = lum.signals.LumiSpectrum(np.arange(5))
>>> lum.to_array(S)
array([[0., 0.],
 [1., 1.],
 [2., 2.],
 [3., 3.],
 [4., 4.]])
...
>>> # Linescan:
>>> L = lum.signals.LumiSpectrum(np.arange(25).reshape((5,5)))
>>> lum.to_array(L)
array([[0., 0., 1., 2., 3., 4.],
 [0., 0., 1., 2., 3., 4.],
 [1., 5., 6., 7., 8., 9.],
 [2., 10., 11., 12., 13., 14.],
 [3., 15., 16., 17., 18., 19.],
 [4., 20., 21., 22., 23., 24.]])

Footnotes

	#1

	https://docs.python.org/3/library/stdtypes.html#str

	#2

	https://docs.python.org/3/library/stdtypes.html#str

	#3

	https://docs.python.org/3/library/functions.html#bool

	#4

	https://docs.python.org/3/library/functions.html#bool

	#5

	https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html#numpy.savetxt

	#6

	https://docs.python.org/3/library/functions.html#bool

	#7

	https://docs.python.org/3/library/functions.html#bool

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog#1,
and this project adheres to Semantic Versioning#2.

2022-11-02 - version 0.2.1

Added

	Improved documentation

	Use lgtm.com#3 to check code integrity

Changed

	Fix conversion to Raman shift (relative wavenumber) and make jacobian=False default; fix inplace=False for axis conversions

	Fix to_eV and to_invcm, as slicing with .isig[] was failing on converted signals

	s.remove_negative now defaults to inplace=False (previously True)

Maintenance

	Use softprops/action-gh-release action instead of deprecated create-release, pin action to a commit SHA

2022-04-29 - version 0.2

Added

	Set up read the docs documentation

	Added metadata convention

	Add proper handling of variance on Jacobian transformation during axis conversion (eV, invcm)

Changed

	Account for the general availability of non-uniform axes with the HyperSpy v1.7 release

	Make LumiTransient 1D and add 2D LumiTransientSpectrum class

	Add python 3.10 build, remove python 3.6

	Fix error in background dimensions that allows compatibility for updated map in HyperSpy (failing integration tests)

	Fix for links in PyPi

	Deprecate exposure argument of s.scale_by_exposure in favor of integration_time in line with metadata convention

	Add deprecation warning to remove_background_from_file

2021-11-23 - version 0.1.3

Changed

	Mentions of the now deleted non_uniform_axes branch in HyperSpy updated to RELEASE_next_minor

	Change ‘master’ to ‘main’ branch

	Updated/corrected badges and other things in README.md and other documentation files

2021-08-22 - version 0.1.2

Added

	This project now keeps a Changelog

	Added signal-hierarchy for time-resolved luminescence

	Added GitHub action for release

	Created logo

Changed

	Consistent black-formatting

	fixed join_spectra

	fixed tests

2021-03-26 - version 0.1

Added

	The first release, basic functionality implemented

Footnotes

	#1

	https://keepachangelog.com/en/1.0.0/

	#2

	https://semver.org/spec/v2.0.0.html

	#3

	https://lgtm.com/projects/g/LumiSpy/lumispy/

Citing LumiSpy

LumiSpy is maintained by an active community of developers#1.

If LumiSpy has been significant to a project that leads to an academic
publication, please acknowledge that fact by citing it. The DOI in the
badge below is the Concept DOI#2 –
it can be used to cite the project without referring to a specific
version. If you are citing LumiSpy because you have used it to process data,
please use the DOI of the specific version that you have employed. You can
find it by clicking on the DOI badge below:

[image: _images/zenodo.4640445.svg]
#3
Footnotes

	#1

	https://github.com/lumispy/lumispy/contributors

	#2

	https://help.zenodo.org/#versioning

	#3

	https://doi.org/10.5281/zenodo.4640445

Contributing

LumiSpy is meant to be a community maintained project. We welcome contributions
in the form of bug reports, documentation, code, feature requests, and more.
In the following we refer to some resources to help you make useful contributions.

Issues

The issue tracker#1 can be used to
report bugs or propose new features. When reporting a bug, the following is
useful:

	give a minimal example demonstrating the bug,

	copy and paste the error traceback.

Pull Requests

If you want to contribute to the LumiSpy source code, you can send us a
pull request#2. Small bug fixes are
corrections to the user guide are typically a good starting point. But don’t
hesitate also for significant code contributions - if needed, we’ll help you
to get the code ready to common standards.

Please refer to the
HyperSpy developer guide#3
in order to get started and for detailed contributing guidelines.

The kikuchypy contributors guide#4,
another HyperSpy extension, also is a valuable resource that can get you
started and provides useful guidelines.

Reviewing

As quality assurance, to improve the code, and to ensure a generalized
functionality, pull requests need to be thoroughly reviewed by at least one
other member of the development team before being merged.

Documentation

The LumiSpy documentation consists of three elements:

	Docstrings following the numpy standard#5
that document the functionality of individual methods on GitHub#6.

	The documentation#7 written using Sphinx#8 and hosted on Read the Docs#9. The source is part of the GitHub repository#10.

	A set of curated Jupyter notebooks in the LumiSpy demos repository#11 on GitHub that provide tutorials and example
workflows.

Improving documentation is always welcome and a good way of starting out to learn the GitHub
functionality. You can contribute through pull requests to the respective repositories.

Code style

LumiSpy follows Style Guide for Python Code#12
with The Black Code style#13.

For docstrings#14, we follow the numpydoc#15 standard.

Package imports should be structured into three blocks with blank lines between
them:

	standard libraries (like os and typing),

	third party packages (like numpy and hyperspy),

	and finally lumispy imports.

Writing tests

All functionality in LumiSpy is tested via the pytest#16
framework. The tests reside in the test directory. Tests are short methods that call
functions in LumiSpy and compare resulting output values with known answers.
Please refer to the HyperSpy development guide#17 for further
information on tests.

Releasing a new version

LumiSpy versioning follows semantic versioning#18
and the version number is therefore a three-part number: MAJOR.MINOR.PATCH.
Each number will change depending on the type of changes according to the following:

	MAJOR increases when making incompatible API changes,

	MINOR increases when adding functionality in a backwards compatible manner, and

	PATCH increases when making backwards compatible bug fixes.

The process to release a new version that is pushed to PyPI#19 and
Conda-Forge#20 is documented in the Releasing guide#21.

Footnotes

	#1

	https://github.com/lumispy/lumispy/issues

	#2

	https://github.com/lumispy/lumispy/pulls

	#3

	http://hyperspy.org/hyperspy-doc/current/dev_guide/intro.html

	#4

	https://kikuchipy.org/en/stable/contributing.html

	#5

	https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard

	#6

	https://github.com/LumiSpy/lumispy/tree/main/lumispy/

	#7

	https://docs.lumispy.org

	#8

	https://www.sphinx-doc.org/en/master/

	#9

	https://docs.lumispy.org

	#10

	https://github.com/LumiSpy/lumispy/tree/main/doc/source

	#11

	https://github.com/lumispy/lumispy-demos

	#12

	https://www.python.org/dev/peps/pep-0008/

	#13

	https://black.readthedocs.io/en/stable/the_black_code_style/current_style.html

	#14

	https://www.python.org/dev/peps/pep-0257/

	#15

	https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard

	#16

	https://docs.pytest.org

	#17

	https://hyperspy.org/hyperspy-doc/current/dev_guide/testing.html

	#18

	https://semver.org/spec/v2.0.0.html

	#19

	https://pypi.org

	#20

	https://conda-forge.org/

	#21

	https://github.com/LumiSpy/lumispy/blob/main/releasing_guide.md

License

LumiSpy is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License (GPL)#1 as published by
the Free Software Foundation, either version 3 of the license, or
(at your option) any later version.

LumiSpy is distributed in the hope that it will be useful,
but without any warranty; without even the implied warranty of
merchantability or fitness for a particular purpose. See the
GNU General Public License#2
for more details.

Footnotes

	#1

	https://www.gnu.org/licenses/#GPL

	#2

	https://www.gnu.org/licenses/#GPL

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 lumispy	

 	
 	
 lumispy.signals	

 	
 	
 lumispy.signals.cl_spectrum	

 	
 	
 lumispy.signals.common_luminescence	

 	
 	
 lumispy.signals.common_transient	

 	
 	
 lumispy.signals.el_spectrum	

 	
 	
 lumispy.signals.luminescence_spectrum	

 	
 	
 lumispy.signals.luminescence_transient	

 	
 	
 lumispy.signals.luminescence_transientspec	

 	
 	
 lumispy.signals.pl_spectrum	

 	
 	
 lumispy.utils	

 	
 	
 lumispy.utils.axes	

 	
 	
 lumispy.utils.io	

Index

 _
 | A
 | C
 | D
 | E
 | I
 | J
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | V

_

 	
 	_make_signal_mask() (lumispy.signals.cl_spectrum.CLSpectrum method)

 	
 	_n_air() (in module lumispy.utils.axes)

 	_reset_variance_linear_model() (lumispy.signals.luminescence_spectrum.LumiSpectrum method)

A

 	
 	axis2eV() (in module lumispy.utils.axes)

 	
 	axis2invcm() (in module lumispy.utils.axes)

C

 	
 	CLSEMSpectrum (class in lumispy.signals.cl_spectrum)

 	CLSpectrum (class in lumispy.signals.cl_spectrum)

 	CLSTEMSpectrum (class in lumispy.signals.cl_spectrum)

 	
 	CommonLumi (class in lumispy.signals.common_luminescence)

 	CommonTransient (class in lumispy.signals.common_transient)

 	correct_grating_shift() (lumispy.signals.cl_spectrum.CLSEMSpectrum method)

 	crop_edges() (lumispy.signals.common_luminescence.CommonLumi method)

D

 	
 	data2eV() (in module lumispy.utils.axes)

 	
 	data2invcm() (in module lumispy.utils.axes)

E

 	
 	ELSpectrum (class in lumispy.signals.el_spectrum)

 	
 	eV2nm() (in module lumispy.utils.axes)

I

 	
 	invcm2nm() (in module lumispy.utils.axes)

J

 	
 	join_spectra() (in module lumispy.utils.axes)

L

 	
 	LazyCLSEMSpectrum (class in lumispy.signals.cl_spectrum)

 	LazyCLSpectrum (class in lumispy.signals.cl_spectrum)

 	LazyCLSTEMSpectrum (class in lumispy.signals.cl_spectrum)

 	LazyELSpectrum (class in lumispy.signals.el_spectrum)

 	LazyLumiSpectrum (class in lumispy.signals.luminescence_spectrum)

 	LazyLumiTransient (class in lumispy.signals.luminescence_transient)

 	LazyLumiTransientSpectrum (class in lumispy.signals.luminescence_transientspec)

 	LazyPLSpectrum (class in lumispy.signals.pl_spectrum)

 	LumiSpectrum (class in lumispy.signals.luminescence_spectrum)

 	
 lumispy

 	module

 	
 lumispy.signals

 	module

 	
 lumispy.signals.cl_spectrum

 	module

 	
 lumispy.signals.common_luminescence

 	module

 	
 lumispy.signals.common_transient

 	module

 	
 	
 lumispy.signals.el_spectrum

 	module

 	
 lumispy.signals.luminescence_spectrum

 	module

 	
 lumispy.signals.luminescence_transient

 	module

 	
 lumispy.signals.luminescence_transientspec

 	module

 	
 lumispy.signals.pl_spectrum

 	module

 	
 lumispy.utils

 	module

 	
 lumispy.utils.axes

 	module

 	
 lumispy.utils.io

 	module

 	LumiTransient (class in lumispy.signals.luminescence_transient)

 	LumiTransientSpectrum (class in lumispy.signals.luminescence_transientspec)

M

 	
 	
 module

 	lumispy

 	lumispy.signals

 	lumispy.signals.cl_spectrum

 	lumispy.signals.common_luminescence

 	lumispy.signals.common_transient

 	lumispy.signals.el_spectrum

 	lumispy.signals.luminescence_spectrum

 	lumispy.signals.luminescence_transient

 	lumispy.signals.luminescence_transientspec

 	lumispy.signals.pl_spectrum

 	lumispy.utils

 	lumispy.utils.axes

 	lumispy.utils.io

N

 	
 	nm2eV() (in module lumispy.utils.axes)

 	
 	nm2invcm() (in module lumispy.utils.axes)

 	normalize() (lumispy.signals.common_luminescence.CommonLumi method)

P

 	
 	PLSpectrum (class in lumispy.signals.pl_spectrum)

 	
 	px_to_nm_grating_solver() (lumispy.signals.luminescence_spectrum.LumiSpectrum method)

R

 	
 	remove_background_from_file() (lumispy.signals.luminescence_spectrum.LumiSpectrum method)

 	
 	remove_negative() (lumispy.signals.common_luminescence.CommonLumi method)

 	remove_spikes() (lumispy.signals.cl_spectrum.CLSpectrum method)

S

 	
 	savetxt() (in module lumispy.utils.io)

 	(lumispy.signals.luminescence_spectrum.LumiSpectrum method)

 	
 	scale_by_exposure() (lumispy.signals.common_luminescence.CommonLumi method)

 	solve_grating_equation() (in module lumispy.utils.axes)

T

 	
 	to_array() (in module lumispy.utils.io)

 	(lumispy.signals.luminescence_spectrum.LumiSpectrum method)

 	to_eV() (lumispy.signals.luminescence_spectrum.LumiSpectrum method)

 	
 	to_invcm() (lumispy.signals.luminescence_spectrum.LumiSpectrum method)

 	to_invcm_relative() (lumispy.signals.luminescence_spectrum.LumiSpectrum method)

 	to_raman_shift() (lumispy.signals.luminescence_spectrum.LumiSpectrum method)

V

 	
 	var2eV() (in module lumispy.utils.axes)

 	
 	var2invcm() (in module lumispy.utils.axes)

 _images/jacobian.png
12

1.0

0.8

0.6

0.4

0.2

0.0

0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05

300

400

500
Wavelength (nm)

600

700

0.00

20

25

3.0
Energy (eV)

35

4.0

_images/math/161c04500decdd8366b3e20ed4d16df2d2a819ca.png

_images/math/28c92c3fb2ed84cc70196ba02d6122a80a623ff3.png

_images/math/2a41157d8b2bc590223e75088c0de4185d86ac84.png

nav.xhtml

 Table of Contents

 		
 Welcome to LumiSpy’s documentation!

 		
 Installation

 		
 Installation using conda

 		
 1. Creating a conda environment

 		
 2. Installing the package in the new environment

 		
 3. Getting Started

 		
 Installation using pip

 		
 Updating the package

 		
 Introduction

 		
 What is LumiSpy

 		
 Signal types

 		
 Where are we heading?

 		
 Non-uniform signal axes

 		
 The energy axis

 		
 The wavenumber axis/Raman shifts

 		
 Jacobian transformation

 		
 Transformation of the variance

 		
 Fitting luminescence data

 		
 Signal variance (noise)

 		
 Utility functions

 		
 Join spectra

 		
 Scaling and normalizing signal data

 		
 Replacing negative data values

 		
 Utilities for spectral maps

 		
 Unit conversion

 		
 Solving the grating equation

 		
 LumiSpy metadata structure

 		
 General

 		
 Sample

 		
 Signal

 		
 Acquisition Instrument

 		
 Laser / SEM / TEM

 		
 Laser

 		
 Filter

 		
 Spectrometer

 		
 Grating

 		
 Filter

 		
 Detector

 		
 Spectral_image

 		
 lumispy

 		
 lumispy package

 		
 Subpackages

 		
 Module contents

 		
 Changelog

 		
 2022-11-02 - version 0.2.1

 		
 Added

 		
 Changed

 		
 Maintenance

 		
 2022-04-29 - version 0.2

 		
 Added

 		
 Changed

 		
 2021-11-23 - version 0.1.3

 		
 Changed

 		
 2021-08-22 - version 0.1.2

 		
 Added

 		
 Changed

 		
 2021-03-26 - version 0.1

 		
 Added

 		
 Citing LumiSpy

 		
 Contributing

 		
 Issues

 		
 Pull Requests

 		
 Reviewing

 		
 Documentation

 		
 Code style

 		
 Writing tests

 		
 Releasing a new version

 		
 License

_images/math/71422f40048d26491b99fbaea773aa8e63c8b6b4.png
Blev] = W he
= e e Anm]

_images/math/78e155ee800d836a4d5ece6295ff44d6ae1d4e4c.png
E = hc/A

_images/math/42f2013a9a9f55f649db0892974b7f9519f6f90a.png

_images/math/6c34f69fc55d9cc84319cc83a25aa67d7025799c.png

_images/math/99f10aaf95dfff9fa4c97c01af83b4eccabea429.png
cm

_images/math/b047e99148d8dbada2426e5d0a862bb8862be1c8.png

_images/math/8afa1c880b7eafb35eae13ee766c46af4cb0a9a0.png

_images/math/8d2c77878104a561906af51ece4b34aac0a11bd8.png

_images/math/b227578d5e2e1e04719c23ef1d71ff5b0c5c96f8.png
Haar

_images/math/b77d7897568b9aae352becdf84634d8d0d2fc70b.png

_images/math/ca34979cc0beed0e91fc1db098f255f6320c4e44.png

_images/math/f5031dfbe856f78fcc5d9cff2d6dd746a5a0ffb0.png
I(F)dE = I(A)dA

_images/math/de00ad26151a6d069794ec3604a157e0cbc47f8b.png
Var(aX) = a*Var(X)

_images/math/f418990f8f889a567003c8ecbe8584f664f9de28.png
E = hc/A

_static/file.png

_static/minus.png

_static/plus.png

